首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2660篇
  免费   69篇
  国内免费   319篇
化学   1486篇
晶体学   32篇
力学   284篇
综合类   2篇
数学   144篇
物理学   1100篇
  2024年   5篇
  2023年   58篇
  2022年   58篇
  2021年   57篇
  2020年   111篇
  2019年   58篇
  2018年   42篇
  2017年   113篇
  2016年   129篇
  2015年   95篇
  2014年   111篇
  2013年   204篇
  2012年   144篇
  2011年   210篇
  2010年   158篇
  2009年   173篇
  2008年   178篇
  2007年   231篇
  2006年   154篇
  2005年   100篇
  2004年   84篇
  2003年   83篇
  2002年   97篇
  2001年   65篇
  2000年   38篇
  1999年   51篇
  1998年   42篇
  1997年   27篇
  1996年   19篇
  1995年   22篇
  1994年   19篇
  1993年   22篇
  1992年   15篇
  1991年   10篇
  1990年   13篇
  1989年   7篇
  1988年   13篇
  1987年   7篇
  1986年   3篇
  1985年   4篇
  1984年   8篇
  1983年   2篇
  1982年   4篇
  1979年   1篇
  1978年   1篇
  1973年   2篇
排序方式: 共有3048条查询结果,搜索用时 203 毫秒
31.
Flexible zinc–air batteries attract more attention due to their high energy density, safety, environmental protection, and low cost. However, the traditional aqueous electrolyte has the disadvantages of leakage and water evaporation, which cannot meet application demand of flexible zinc–air batteries. Hydrogels possessing good conductivity and mechanical properties become a candidate as the electrolytes of flexible zinc–air batteries. In this work, advances in aspects of conductivity, mechanical toughness, environmental adaptability, and interfacial compatibility of hydrogel electrolytes for flexible zinc–air batteries are investigated. First, the additives to improve conductivity of hydrogel electrolytes are summarized. Second, the measures to enhance the mechanical properties of hydrogels are taken by way of structure optimization and composition modification. Third, the environmental adaptability of hydrogel electrolytes is listed in terms of temperature, humidity, and air composition. Fourth, the compatibility of electrolyte–electrode interface is discussed from physical properties of hydrogels. Finally, the prospect for development and application of hydrogels is put forward.  相似文献   
32.
In order to modify its physical properties, particularly the drawability and toughness, polylactide (PLA) was melt blended with a set of PEG-b-PPG-b-PEG block copolymers with varying ratio of the hydrophilic (PEG) and hydrophobic (PPG) blocks. Miscibility of the copolymers with PLA depended on their molar mass and PEG content. Interestingly, the best drawability was achieved in the case of partially miscible blends, in which fine liquid inclusions of the modifier were dispersed in PLA rich matrix with glass transition temperature only moderately decreased, to about 50 °C. About 37 fold increase of the elongation at break and about 1.5 fold increase of the tensile impact strength with respect to neat PLA were reached at small content (10 wt.%) of the modifier. Despite the phase separation, the blends remained transparent. In addition, the barrier properties for oxygen were improved.  相似文献   
33.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon fiber/epoxy composite. The chemical structure of the functionalized GO (FGO) nanosheets was characterized by elemental analysis, FT-IR and XRD. Hand lay-up, as a simple method, was applied for 3-ply composite fabrication. In the sample preparation, the fiber-to-resin ratio of 40:60 (w:w) and fiber orientations of 0°, 90°, and 0° were used. The GO and FGO nanoparticles were first dispersed in the epoxy resin, and then the GO and FGO reinforced epoxy (GO- or FGO-epoxy) were directly introduced into the carbon fiber layers to improve the mechanical properties. The GO and FGO contents varied in the range of 0.1–0.5 wt%. Results showed that the mechanical properties, in terms of tensile and flexural properties, were mainly dependent on the type of GO functionalization followed by the percentage of modified GO. As a result, both the tensile and flexural strengths are effectively enhanced by the FGOs addition. The tensile and flexural moduli are also increased by the FGO filling in the epoxy resin due to the excellent elastic modulus of FGO. The optimal FGO content for effectively improving the overall composite mechanical performance was found to be 0.3 wt%. Scanning electron microscopy (SEM) revealed that the failure mechanism of carbon fibers pulled out from the epoxy matrix contributed to the enhancement of the mechanical performance of the epoxy. These results show that diamine FGOs can strengthen the interfacial bonding between the carbon fibers and the epoxy adhesive.  相似文献   
34.
以氯化1-丁基-3-甲基咪唑鎓([Bmim]Cl)和二元羧酸为原料,由不同摩尔比混合制备了一类新型低共熔溶剂,采用红外光谱对[Bmim]Cl和二元羧酸之间的作用进行了分析。分别测定了其粘度、电导率、密度、折射率等物理性质,并研究了温度、二元羧酸结构和摩尔比对这些物理性质的影响。结果表明,新型低共熔溶剂的粘度随温度的升高而降低,电导率随温度的升高而增加。温度对两者的影响可以采用VTF方程进行精确地拟合。新型低共熔溶剂的密度随温度的升高而呈线性下降。对新型低共熔溶剂的过量摩尔体积进行计算的结果表明,过量摩尔体积均为正值,二元羧酸对过量摩尔体积的贡献远大于[BMIM]Cl,而结构特性的贡献多于物理作用。折射率和密度随二元羧酸碳数的变化趋势基本相似。  相似文献   
35.
采用稀土三元催化剂制备了二氧化碳-环氧丙烷-马来酸酐三元共聚物(PPCMA).用红外和核磁谱图确定了PPCMA的结构及马来酸酐单元的含量,3 wt%马来酸酐投料量的PPCMA(共聚物中马来酸酐单元含量4.1%)的玻璃化转变温度(Tg)和起始热分解温度(Td-5%)分别为13.4℃和217℃,拉伸强度为2.88 MPa,断裂伸长率为1669%,与二氧化碳-环氧丙烷共聚物(PPC)相比,引入少量马来酸酐的PPCMA有望成为一种韧性材料,并可对PPC和聚3-羟基丁酸酯(PHB)共混体系进行改性.当在PPC/PHB共混体系中添加10 wt%的PPCMA时,所得共混材料的拉伸强度为18.2 MPa,断裂伸长率则提高到85%,较没有添加PPCMA的样品提高了4.25倍,因此PPCMA的加入能有效提高PPC/PHB共混体系的韧性,改善PPC/PHB共混体系的力学性能.偏光显微镜的研究表明PPC/PHB共混体系加入PPCMA后,很快形成大量尺寸小的PHB球晶,且结晶速度大幅度提高,因此PPCMA在一定意义上可视为一种特殊的“成核剂”.  相似文献   
36.
采用机械剥离石墨烯修饰电极快速检测食品接触材料中双酚A的迁移量。X射线电子衍射表征显示机械剥离石墨烯表面不存在含氧官能团,与化学还原石墨烯相比,机械剥离石墨烯对双酚A具有更好的电催化性能,降低了双酚A的氧化过电位,提高了电流响应。在优化的试验条件下,双酚A的浓度在1.0×10-7~1.5×10-5mol·L-1范围内与氧化峰电流呈线性关系,检出限(3S/N)为3.0×10-8mol·L-1。采用该电极对食品模拟物中的双酚A进行检测,加标回收率在85.1%~104%之间,测定值的相对标准偏差(n=6)在2.7%~5.9%之间。  相似文献   
37.
传统化学交联的聚丙烯酰胺(PAM)水凝胶由于力学性能较弱,其应用范围受到很大限制。与之相比,采用纳米复合技术制备的PAM纳米复合(NC)水凝胶,不仅大幅提高了力学性能,而且在溶胀率等方面也有明显的提高。本文结合该领域近年来的研究进展,将PAM NC水凝胶分为纯物理交联和化学物理交联相结合两类,重点讨论了NC水凝胶在力学性能方面的研究结果,对溶胀率等其它方面的性能也进行了综合论述。  相似文献   
38.
A crystal-inelasticity-based constitutive model for martensitic reorientation and detwinning in shape-memory alloys (SMAs) has been developed from basic thermodynamics principles. The model has been implemented in a finite-element program by writing a user-material subroutine. We perform two sets of finite-element simulations to model the behavior of polycrystalline SMAs: (1) The full finite-element model where each finite element represents a collection of martensitic microstructures which originated from within an austenite single crystal, chosen from a set of crystal orientations that approximates the initial austentic crystallographic texture. The macroscopic stress-strain responses are calculated as volume averages over the entire aggregate: (2) The Taylor model (J. Inst. Metals 62 (1938) 32) where an integration point in a finite element represents a material point which consist of sets of martensitic microstructures which originated from within respective austenite single-crystals. Here the macroscopic stress-strain responses are calculated through a homogenization scheme.Experiments in tension and compression were conducted on textured polycrystalline Ti-Ni rod initially in the martensitic phase by Xie et al (Acta Mater. 46 (1998) 1989). The material parameters for the constitutive model were calibrated by fitting the tensile stress-strain response from a full finite-element calculation of a polycrystalline aggregate to the simple tension experiment. With the material parameters calibrated the predicted stress-strain curve for simple compression is in very good accord with the corresponding experiment. By comparing the simulated stress-strain response in simple tension and simple compression it is shown that the constitutive model is able to predict the observed tension-compression asymmetry exhibited by polycrystalline Ti-Ni to good accuracy. Furthermore, our calculations also show that the macroscopic stress-strain response depends strongly on the initial martensitic microstructure and crystallographic texture of the material.We also show that the Taylor model predicts the macroscopic stress-strain curves in simple tension and simple compression reasonably well. Therefore, it may be used as a relatively inexpensive computational tool for the design of components made from shape-memory materials.  相似文献   
39.
The vocal cords play an important role on voice production. Air coming from the lungs is forced through the narrow space between the two vocal cords that are set in motion in a frequency that is governed by the tension of the attached muscles. The motion of the vocal cords changes the type of flow, that comes from the lungs, to pulses of air, and as the flow passes through the oral and nasal cavities, it is amplified and further modified until it is radiated from the mouth. This complex process can be modeled by a system of integral-differential equations. This paper considers two mechanical models previously used for explaining the dynamics of the vocal cords. It shows that the level of naturalness of the sound generated by these models is rather poor, and it proposes temporal variations of the parameters of the models to increase such level. Examples of synthetic vowels and diphthongs are given to assess the models. In general, the results show that, although the system of voice production is complex, we can achieve satisfactory results with relatively simple low-dimensional models, by suitable temporal variations of the aerodynamic parameters.  相似文献   
40.
The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号